DCCS326 Korea University 2019 Fall

Convergence Informatics

Chapter 9 (Week 5)

Statistical hypothesis testing Asst. Prof. Minseok Seo

mins@korea.ac.kr

KOREA UNIVERSITY JOJS

Contents

Hypothesis testing

- 🔹 🍃 Main idea
 - > Two types of Hypothesis
 - > Two types of Errors
 - Confusion Matrix
 - Standard Error
 - Test statistic (Z statistic)
 - ➤ P-value
 - Significance Level
 - Power & Sample size

Hypothesis testing \mathbf{O} Statistical test

Hypothesis testing (Remind)

Basic concept of hypothesis testing

- Basic questions when given data
 - Difference
 - Equivalency

> What is a statistical hypothesis?

- Null hypothesis
- Alternative hypothesis

Hypothesis testing Advanced concept of hypothesis testing (Today's topic)

- \succ Why is the null hypothesis important for statistical test?
- What is the statistical (Hypothesis) test?
- > What is statistical power?
- \succ What is test statistic?
- > What is P-value?

Decision making Decision making under uncertainty

- We have to make decisions even when you are unsure. School, marriage, therapy, jobs, whatever.
- Statistics provides an approach to decision making under uncertainty. Sort of decision making by choosing the same way you would bet. Maximize expected utility (subjective value).
- In inferential statistics, the null hypothesis is a general statement or default position that there is nothing new happening, like there is no association among groups, or no relationship between two measured phenomena.

Main idea of Hypothesis testing

Statistical testing

A statistical hypothesis, sometimes called confirmatory data analysis, is a hypothesis that is testable on the basis of observing a process that is modeled via a set of random variables.

*** Main idea ***

- \succ It is difficult to prove that a fact is "right".
- \succ But it is easy to prove that it is "wrong".
- > The reason is that you only have to find one counter example.

Two types of hypothesis Alternative and null hypothesis

Alternative hypothesis H_1	Null hypothesis <i>H</i> ₀
H_1, H_A	H ₀
Hypothesis as main purpose of the study	Hypothesis as opposed to purpose
Hypothesis that you want to claim to be right	Hypothesis that you want to claim to be wrong

> It is a way to induce contradiction after assuming null hypothesis is correct.

Main idea of Hypothesis testing

Statistical testing (Cont.)

*** Main idea ***

- > It is difficult to prove that a fact is "right", but it is easy to prove that it is "wrong".
- \succ The reason is that you only have to find one counter example.
 - All students in Convergence Informatics classes are H_1 :
 - statistical experts.
- Let's set up the opposite hypothesis
 - All students in the Convergence Informatics class do not
 - H_0 : know statistics.

Main idea of Hypothesis testing Statistical testing (Cont.)

 H_1 : All students in Convergence Informatics classes are statistical experts.

Our goal is to prove that this proposition is "true"

 H_0 : All students in the Convergence Informatics class do not know statistics.

If we find evidence for "false" in this null hypothesis, the original proposition is "true."

Main idea of Hypothesis testing

Another example

 H_1 : The height of men and women is different

Our goal is to prove that this proposition is "true"

 H_0 : The height of men and women is same

- Assuming that men and women are the same height, let's examine the men's and women's heights, respectively, to find the mean and variance.
 - If we find numerical evidence that men and women's height are different in collected data?
 - Original proposition is "true"

Two types of errors Statistical error

Statistical test results reject null hypothesis or not.

	H ₁ : signal present	H ₀ : signal absent
Detection	True Positive	False Positive type I error
Null result	False Negative <i>type II error</i>	True Negative
	TPF = sensitivity = power = TP/(TP+FN)	FPF = 1-specificity = 1-CL = FP/(FP+TN)

Two types of errors Statistical error (i.e. classification?)

Statistical test results reject null hypothesis or not.

Truth Declaration	True Hypothesis H _o (Null)	True Hypothesis H ₁
Declared Hypothesis H ₀ (Null)	$\begin{split} P(H_0 \mid H_0) &= P_{Spec} = Specificity \\ &= \frac{\# H_0 \; Samples \; Declared \; H_0}{\# H_0 \; Samples} \end{split}$	$P(H_0 H_1) = P_{Miss} = P(Miss)$ $= \frac{\#H_1 Samples Declared H_0}{\#H_1 Samples}$
Declared Hypothesis H ₁	$P(H_1 H_0) = P_{FA} = P(False A larm)$ $= \frac{\# H_0 Samples Declared H_1}{\# H_0 Samples}$	$P(H_1 H_1) = P_D = P(Detection)$ $= \frac{\#H_1 Samples Declared H_1}{\#H_1 Samples}$
	$P(H_0 H_0) + P(H_1 H_0) = 1$	$P(H_0 H_1) + P(H_1 H_1) = 1$

Assume : Correct classification is given zero cost $\Rightarrow C_{00} = C_{11} = 0$ Incorrect classification is given full cost $\Rightarrow C_{01} = C_{10} = 1$

Several measures

Confusion matrix (Basic)

- ➤ TP: true positive
- > TN: true negative
- > FP: false positive (Type I error)
- > FN: false negative (Type II error)

Several measures (extension)

Confusion matrix (Advanced)

> TPR (True Positive Rate, Power, Sensitivity, Hit rate, Recall)

$$=\frac{TP}{TP+FN}=1-FPR$$

TNR (True Negative Rate, Specificity)

$$=\frac{TN}{TN+FP}=1-FPR$$

Be sure to understand and memorize this concept because it is the most widely used measure in statistics & any data science field.

Several measures (extension)

Confusion matrix (Advanced)

PPV (Positive Predictive Value, Precision)

$$=\frac{TP}{TP+FP}=1-FDR$$

NPV (Negative Predictive Value)

$$=\frac{TN}{TN+FN}=1$$
 - FOR

FNR (False Negative Rate, Miss rate)

$$=\frac{FN}{FN+TP}=1-TPR$$

FPR (False Positive Rate, Fall-out)

$$=\frac{FP}{FP+TN}=1-TNR$$

Several measures (extension) Confusion matrix (Advanced)

$$=\frac{FP}{FP+TP}=1-PPV$$

> ACC (Accuracy)

TP+TNTP+TN+FP+FN

➢ ERR (Error Rate)

$$=\frac{FP+FN}{TP+TN+FP+FN}=1-ACC$$

Body weight study

- The problem: In the 1970s, 20–29 year old men in the U.S. had a mean μ body weight of 170 pounds. Standard deviation σ was 40 pounds. We test whether mean body weight in the population now differs.
- > Null hypothesis $H_{0:} \mu = 170$ ("no difference")
- ➤ The alternative hypothesis can be either $H_{a:} \mu > 170$ (one-sided test) or $H_{a:} \mu \neq 170$ (two-sided test)
- One side vs Two-side

Body weight study

The **sampling distributions of a mean (SDM)** describes the behavior of a sampling mean

Illustrative example Body weight study

$$\overline{x} \sim N(\mu, SE_{\overline{x}})$$

where
$$SE_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

Z-statistic (Test statistic)

This is an example of a one-sample test of a mean when σ is known. Use this statistic to test the problem:

$$z_{\text{stat}} = \frac{\overline{x} - \mu_0}{SE_{\overline{x}}}$$

where $\mu_0 \equiv$ population mean assuming H_0 is true

and
$$SE_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

Z-statistic (Test statistic)

> This is an example of a one-sample test of a mean when σ is known. Use this statistic to test the problem:

$$z_{\text{stat}} = \frac{\overline{x} - \mu_0}{SE_{\overline{x}}}$$

where $\mu_0 \equiv$ population mean assuming H_0 is true

and
$$SE_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

When will the test statistic value increase or decrease?

Z-statistic (Test statistic)

- > For the illustrative example, $\mu_0 = 170$
- > We know $\sigma = 40$ and n = 64. Therefore

$$SE_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \frac{40}{\sqrt{64}} = 5$$

➢ If we found a sample mean of 173, then

$$z_{\text{stat}} = \frac{\overline{x} - \mu_0}{SE_{\overline{x}}} = \frac{173 - 170}{5} = 0.60$$

Illustrative example Z-statistic (Test statistic)

> If we found a sample mean of 185, then

$$z_{\text{stat}} = \frac{\overline{x} - \mu_0}{SE_{\overline{x}}} = \frac{185 - 170}{5} = 3.00$$

> The *P*-value answer the question: What is the probability of the observed test statistic or one more extreme when H_0 is true?

Definition of P-value: Under the assumption that H0 is correct, probability that the observed test statistic is skewed towards H1.

Convert z statistics to P-value :

- > For H_a : $\mu > \mu_0 \Rightarrow P = \Pr(Z > z_{stat}) = right-tail beyond <math>z_{stat}$
- For H_a : $\mu < \mu_0 \Rightarrow P = \Pr(Z < z_{stat}) = \text{left tail beyond } z_{stat}$
- > For H_a : $\mu^1 \mu_0 \Rightarrow P = 2 \times \text{one-tailed } P$ -value

> One-sided *P*-value for z_{stat} of 0.6

> One-sided *P*-value for z_{stat} of 0.6

Interpretation of P-value

Probability value

Conventions*

- > $P > 0.10 \Rightarrow$ non-significant evidence against H_0
- > 0.05 < $P \le 0.10 \Rightarrow$ marginally significant evidence
- > 0.01 < P ≤ 0.05 ⇒ significant evidence against H_0
- > $P \le 0.01 \Rightarrow$ highly significant evidence against H_0

Examples

- > $P = .27 \Rightarrow$ non-significant evidence against H_0
- > $P = .01 \Rightarrow$ highly significant evidence against H_0

* It is unwise to draw firm borders for "significance"

- \succ Let $\alpha \equiv$ probability of erroneously rejecting H_0
- > Set α threshold (e.g., let α = .10, .05, or whatever)
- \succ Reject H_0 when P ≤ α
- > Retain H_0 when $P > \alpha$
- \succ Example: Set α = .10. Find *P* = 0.27 \Rightarrow retain *H*₀
- \succ Example: Set α = .01. Find *P* = .001 \Rightarrow reject *H*₀

- A. Hypothesis statements $H_0: \mu = \mu_0 \text{ vs.}$ $H_a: \mu \neq \mu_0 \text{ (two-sided) or}$ $H_a: \mu < \mu_0 \text{ (left-sided) or}$ $H_a: \mu > \mu_0 \text{ (right-sided)}$
- B. Test statistic
- C. P-value: convert z_{stat} to P value
- D. Significance statement (usually not necessary)

Lake Wobegon

- Let X represent Weschler Adult Intelligence scores (WAIS)
- Typically, X ~ N(100, 15)
- > Take n = 9 from Lake Wobegon population
- \blacktriangleright Data \Rightarrow {116, 128, 125, 119, 89, 99, 105, 116, 118}
- Calculate: x-bar = 112.8
- Does sample mean provide strong evidence that population mean µ > 100?

Lake Wobegon

A. Hypotheses: $H_0: \mu = 100 \text{ versus}$ $H_a: \mu > 100 \text{ (one-sided)}$ $H_a: \mu \neq 100 \text{ (two-sided)}$

B. Test statistic:

$$SE_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \frac{15}{\sqrt{9}} = 5$$
$$z_{\text{stat}} = \frac{\overline{x} - \mu_0}{SE_{\overline{x}}} = \frac{112.8 - 100}{5} = 2.56$$

 $P = .0052 \Rightarrow$ it is unlikely the sample came from this null distribution \Rightarrow strong evidence against H_0

Lake Wobegon

- > H_a: µ ≠100
- ➤ Considers random deviations "up" and "down" from µ₀ ⇒tails above and below ±z_{stat}
- Thus, two-sided P
 = 2 × 0.0052
 = 0.0104

Statistical Power & Sample size

Concept of "Power"

Two types of decision errors:

Type I error = erroneous rejection of true H_0 Type II error = erroneous retention of false H_0

Decision	H_0 true	H_0 false
Retain H_0	Correct retention	Type II error
Reject H_0	Type I error	Correct rejection

Truth

 $\alpha \equiv$ probability of a Type I error

 $\beta \equiv$ Probability of a Type II error

Power of z-test

$$1 - \beta = \Phi \left(-z_{1 - \frac{\alpha}{2}} + \frac{|\mu_0 - \mu_a| \sqrt{n}}{\sigma} \right)$$

,where

- \blacktriangleright $\Phi(z)$ represent the cumulative probability of Standard Normal Z
- \succ μ_0 represent the population mean under the null hypothesis
- \succ μ_a represents the population mean under the alternative hypothesis

Calculation of Power

Example to calculate power in Z test

A study of n = 16 retains H₀: μ = 170 at α = 0.05 (two-sided); σ is 40. What was the power of test's conditions to identify a population mean of 190?

$$-\beta = \Phi\left(-z_{1-\frac{\alpha}{2}} + \frac{|\mu_0 - \mu_a|\sqrt{n}}{\sigma}\right)$$
$$= \Phi\left(-1.96 + \frac{|170 - 190|\sqrt{16}}{40}\right)$$
$$= \Phi(0.04)$$
$$= 0.5160$$

Calculation of Effective Sample size

Example to calculate effective sample size in Z test

Sample size for one-sample z test:

$$n = \frac{\sigma^2 \left(z_{1-\beta} + z_{1-\frac{\alpha}{2}} \right)^2}{\Delta^2}$$

, where

- $1 \beta \equiv$ desired power
- $\alpha \equiv$ desired significance level (two-sided)
- $\sigma \equiv$ population standard deviation

 Δ = $\mu_0 - \mu_a$ \equiv the difference worth detecting

Example Practice to calculate effective sample size

- > How large a sample is needed for a one-sample *z* test with 90% power and $\alpha = 0.05$ (two-tailed) when $\sigma = 40$?
- Let H₀: μ = 170 and H_a: μ = 190 (thus, Δ = μ₀ − μ_a = 170 − 190 = −20)

$$n = \frac{\sigma^2 \left(z_{1-\beta} + z_{1-\frac{\alpha}{2}} \right)^2}{\Delta^2} = \frac{40^2 \left(1.28 + 1.96 \right)^2}{-20^2} = 41.99$$

We can conclude that up to 42 samples should be required

End of Slide

Next class

- \succ This Thursday is a national holiday, so there is no class.
- In next Monday, we will learn clustering analysis.
- If possible, we will learn additional advanced hypothesis tests at that time together.
- In next Thursday, we will do practice statistical hypothesis test and clustering analysis using R programming.

